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Abstract 

Model Predictive Control (MPC) refers to a class of algorithms that compute a sequence of 

manipulated variable adjustments in order to optimize the future behaviour of a plant. MPC 

technology can now be found in a wide variety of application areas. The neural network 

predictive controller that is discussed in this paper uses a neural network model of a nonlinear 

plant to predict future plant performance. The controller calculates the control input that will 

optimize plant performance over a specified future time horizon. In the paper, simulation of 

the neural network based predictive control of the continuous stirred tank reactor is presented. 

The simulation results are compared with fuzzy and PID control. 

 

Keywords: model predictive control, fuzzy control, PID control, neural network, continuous 

stirred tank reactor 

Introduction 

Conventional process control systems utilize linear dynamic models. For highly 

nonlinear systems, control techniques directly based on nonlinear models can be expected to 

provide significantly improved performance. Model Predictive Control (MPC) concept has 

been extensively studied and widely accepted in industrial applications. The main reasons for 

such popularity of the predictive control strategies are the intuitiveness and the explicit 

constraint handling. The predictive controllers are used in many areas, where high-quality 

control is required, see e.g. Qin and Badgwell (1996), Qin and Badgwell (2000), Rawlings 

(2000). Model-based predictive control refers to a class of control algorithms, which are 

based on a process model. MBPC can be applied to such systems, as e.g. multivariable, non-

minimum-phase, open-loop unstable, non-linear, or systems with long time delays. 
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Constrained model predictive control becomes the standard algorithm for advanced control in 

process industries.Several versions of MPC techniques are Model Algorithmic Control 

(MAC), see e.g. Richalet et al. (1978), Dynamic Matrix Control (DMC), see e.g. Cutler et al. 

(1980), and Internal Model Control (IMC), see e.g. Garcia et al. (1982). Although the above 

techniques differ from each other in some details, they are fundamentally the same, because 

all of them are based on linear process modelling. If the nonlinear model is available, the 

computational requirements are very high, see e.g. Garcia et al. (1989), especially for 

nonlinear MIMO processes. It is estimated that, in a typical commissioning project, modelling 

efforts can take up to 90% of the cost and time in implementing a model predictive controller 

by Morari and Lee (1999).  

The Neural Network Model Predictive Control (NNMPC) is another typical and 

straightforward application of neural networks to nonlinear control. When a neural network is 

combined with MPC approach, it is used as a forward process model for the prediction of 

process output, see e.g. Hunt et al. (1992), Nørgaard et al. (2000). Control of chemical 

reactors is one of the most studied areas of process control. In this paper, a neural network 

based predictive control strategy is applied to a continuous-time stirred reactor with two 

parallel first-order irreversible exothermic reactions. Simulation results show that the neural 

network based predictive control gives promising results. 

Theoretical 

Model-based predictive control 

MBPC is a name of several different control techniques. All are associated with the same idea. 

The prediction is based on the model of the process, as it is shown in Figure 1. 

 

Fig. 1. Classical model-based predictive control scheme 
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The target of the model-based predictive control is to predict the future behaviour of 

the process over a certain horizon using the dynamic model and obtaining the control actions 

to minimize a certain criterion, generally  

 ( )( ) ( ) ( )( ) ( )( )∑∑ −−
uN

=j

N

1N=j
rm j+kuλ+j+kyj+ky=kuk,J

1

2
2

2 1   (1) 

 Signals ym(k+j), yr(k+j), u(k+j) are the j-step ahead predictions of the process output, 

the reference trajectory and the control input, respectively. The values N1 and N2 are the 

minimal and maximal prediction horizon of the controlled output, and Nu is the prediction 

horizon of the control input. The value of N2 should cover the important part of the step 

response curve. The use of the control horizon Nu reduces the computational load of the 

method. The parameter λ represents the weight of the control signal. At each sampling period 

only the first control signal of the calculated sequence is applied to the controlled process. At 

the next sampling time the procedure is repeated. This is known as the receding horizon 

concept. 

 The controller consists of the plant model and the optimization block. Eq. (1) is used 

in combination with the input and output constraints: 
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The ability to handle constraints is one of the key properties of MBPC and also causes its 

spread, use, and popularity in industry. MBPC algorithms are reported to be very versatile and 

robust in process control applications. 

 
Neural network predictive control 

Neural networks have been applied very successfully in the identification and control of 

dynamic systems. The universal approximation capabilities of the multilayer perceptron make 

it a popular choice for modelling of nonlinear systems and for implementing of nonlinear 

controllers. The use of a neural network for process modelling is shown in Figure 2. The 

unknown function may correspond to a controlled system, and the neural network is the 

identified plant model. Two-layer networks, with sigmoid transfer functions in the hidden 

layer and linear transfer functions in the output layer, are universal approximators. 



A.Vasičkanová, M.Bakošová, Neural Network Predictive Control of a Chemical Reactor 
24 

Acta Chimica Slovaca, Vol.2, No.2, 2009, 21-36 

 

Fig. 2. Neural network as a function approximator 

 

The prediction error between the plant output and the neural network output is used as 

the neural network training signal. The neural network plant model uses previous inputs and 

previous plant outputs to predict future values of the plant output. The structure of the neural 

network plant model is given in the Figure 3, where u(t) is the system input, yp(t) is the plant 

output, ym(t) is the neural network model plant output, the blocks labelled TDL are tapped 

delay lines that store previous values of the input signal, IW i,j  is the weight matrix from the 

input  j to the layer i. LW i,j is the weight matrix from the layer  j to the layer i.  

 

 

Fig. 3. Structure of the neural network plant model 

 

This network can be trained off-line in batch mode, using data collected from the 

operation of the plant. The procedure for selecting the network parameters is called training 

the network. The Levenberg-Marquardt (LM) algorithm is very efficient for training. The LM 

algorithm is an iterative technique that locates the minimum of a function that is expressed as 

the sum of squares of nonlinear functions. It has become a standard technique for nonlinear 

least-squares problems and can be thought of as a combination of steepest descent and the 
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Gauss-Newton method, see e. g. Kelley (1999), Levenberg (1944), Madsen et al. (2004), 

Marquardt (1963), Mittelmann (2004). 

When the current solution is far from the correct one, the algorithm behaves like a 

steepest descent method: slow, but guaranteed to converge. When the current solution is close 

to the correct solution, it becomes a Gauss-Newton method.  

 Let f be an assumed functional relation which maps a parameter vector mRp∈  to an 

estimated measurement vector ( ) nRx,pf=x ∈ˆˆ . An initial parameter estimate p0 and a 

measured vector x are provided, and it is desired to find the vector p+ that best satisfies the 

functional relation f, i.e. minimizes the squared distance eT e  with xx=e ˆ− . The basis of the 

LM algorithm is a linear approximation to f in the neighbourhood of p. For a small pδ , a 

Taylor series expansion leads to the approximation ( ) ( ) pp Jδ+pfδ+pf ≈  where J is the 

Jacobi matrix 
( )
p

pf

∂
∂

. Like all non-linear optimization methods, LM is iterative: initiated at 

the starting point p0, the method produces a series of vectors p1, p2, ..., that converge towards 

a local minimizer p+
  for f. Hence, at each step, it is required to find the pδ  that minimizes the 

quantity pJδe− . The sought pδ  is thus the solution of a linear least-square problem: the 

minimum is attained when eJδp −  is orthogonal to the column space of J. This leads to 

( ) 0,=eJδJ p
T − which yields pδ  as the solution of the normal equations: 

 .eJ=JδJ T
p

T  (3) 

 The matrix JTJ in the left hand side of Eq. (3) is the approximate Hessian, i.e. an 

approximation to the matrix of second order derivatives. The LM method actually solves a 

slight variation of Eq. (3), known as the augmented normal equations e,J=Nδ T
p  where the 

off-diagonal elements of N are identical to the corresponding elements of JTJ and the diagonal 

elements are given by [ ]iiT
ii JJ+µ=N  for some µ > 0. The strategy of altering the diagonal 

elements of  JTJ is damping and µ is referred to the damping term. If the updated parameter 

vector pδ+p  with pδ  computed from Eq. (3) leads to a reduction of the error e, the update is 

accepted and the process repeats with a decreased damping term. Otherwise, the damping 

term is increased, the augmented normal equations are solved again and the process iterates 

until a value of pδ  that decreases error is found.  
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In LM, the damping term is adjusted at each iteration to assure a reduction in the error e. The 

LM algorithm terminates when at least one of the following conditions is met: 

1. The magnitude of the gradient of eTe, i.e. JTe in the right hand side of Eq. (3), 

drops below a threshold ε1. 

2. The relative change in the magnitude of δ p  drops below a threshold ε2. 

3. The error  eTe drops below a threshold ε3. 

4. A maximum number of iterations kmax is completed. 

 If a covariance matrix ∑  for the measured vector x is available, the minimum is 

found by solving a weighted least squares problem defined by the weighted normal equations 

 eJ=JδJ T
p

T ∑∑  (4) 

 

Fuzzy Control 

Classic control theory is usually based on mathematical models which describe the behaviour 

of the controlled process. The main aim of fuzzy control is to simulate a human expert 

(operator), who is able to control the process by translating the linguistic control rules into a 

fuzzy set theory. 

 In 1965, Lotfi A. Zadeh introduced fuzzy sets, where a more flexible sense of 

membership is possible. The past few years have witnessed a rapid growth in the use of fuzzy 

logic controllers for the control of processes that are complex and badly defined. Most fuzzy 

controllers developed till now have been of the rule-based type by Driankov et al. (1993), 

where the rules in the controller attempt to model the operator´s response to particular process 

situations. An alternative approach uses fuzzy or inverse fuzzy model in process control, see 

e.g. Babuška et al. (1995), Jang (1995), because it is often much easier to obtain information 

on how a process responds to particular inputs than to record how, and why, an operator 

responds to particular situations.  

 A review of the work on fuzzy control has been presented by Lee (1990). Design of a 

simple fuzzy controller can be based on a three step design procedure, that builds on PID 

control: start with a PID controller; insert an equivalent, linear fuzzy controller; make the 

controller gradually nonlinear. The fuzzy controller can include empirical rules. This property 

is especially useful in operator controlled plants. Let us consider e.g. a typical fuzzy 

controller: 
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if error is negative and change in error is negative then output is negative big, 

if error is negative and change in error is zero then output is negative medium. 

The collection of rules is called a rule base. The computer is able to execute the rules and 

compute a control signal depending on the measured inputs error and change in error. The 

inputs are most often hard or crisp measurements from some measuring equipment.  

 A dynamic controller would have additional inputs, for example derivatives, integrals, 

or previous values of measurements backwards in time. The block fuzzification converts each 

piece of input data to degrees of membership by a lookup in one or several membership 

functions. The rules may use several variables, both in the condition and the conclusion of the 

rules. Basically, a linguistic controller contains rules in the if-then format, but they can be 

presented in different formats. The resulting fuzzy set must be converted to a number that can 

be sent to the process as a control signal. This operation is called defuzzification. There are 

several defuzzification methods. Output scaling is also relevant. In case the output is defined 

on a standard universe this must be scaled to engineering units.  

 

Fig. 4. Fuzzy controller 

 

Takagi-Sugeno type controller 

 The output sets can often be linear combinations of the inputs, or even a function of 

the inputs. The developed Fuzzy Logic Toolbox for the software package Matlab implements 

one of the hybrid schemes known as the Adaptive Network based Fuzzy Inference System 

(Anfis). Anfis represents a Sugeno-type fuzzy system in the special five-layer feed forward 
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network architecture and uses a hybrid learning algorithm to identify the membership function 

parameters of single-output, Sugeno type fuzzy inference systems. Suppose the rule base of a 

Sugeno - Takagi fuzzy system is as follows, see e.g. Nauck et al. (1977), Takagi et al. (1985), 

Kvasnica et al. (2009):  

 

 if x1 is Ai and x2  is Bi then y = pi x1 +qi x2 +r i, i=1,..N    (5) 

 

The if-parts (antecedents) of the rules describe fuzzy regions in the space of input variables 

error e, its derivative de. The then-parts (consequents) are functions of the inputs, usually 

linear with consequent parameters pi, qi, r i. Further, y is an output variable, Ai, Bi are fuzzy 

sets characterized by three linguistic variables (small, middle, large).  

 

Experimental 

Consider a continuous stirred tank reactor (CSTR) by Vasičkaninová et al. (2005), 

Vasičkaninová et al. (2006) with two parallel first-order irreversible reactions according to the 

scheme CAB,A kk →→ 21

, where B is the main product and C is the side product. The 

measured and controlled output is the temperature of the reaction mixture. The control input is 

the volumetric flow rate of the cooling medium. Possible disturbances include changes in the 

feed temperature and the coolant temperature. The only manipulated variable is the coolant 

flow rate. 

 The simplified non-linear dynamic mathematical model of the chemical reactor 

consists of five differential equations: 
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The reaction rate coefficients are non-linear functions of the reaction temperature being 

defined by the Arrhenius relations 
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The heat generated by chemical reactions is expressed as  

 

 )H∆V(ck+)H∆V(ck=Q rArAr 2211 −−&      (12) 

 

Here, c are concentrations, T are temperatures, V are volumes, ρ are densities, CP are 

specific heat capacities, q are volumetric flow rates, ∆rH are reaction enthalpies, A is the heat 

transfer area, k is the heat transfer coefficient. The subscript c denotes the coolant, r the 

reacting mixture and the superscript s denotes the steady-state values in the main operating 

point. Parameters and inputs of the reactor are enumerated in Table 1. 

 
Table 1: Reactor parameters and inputs 

Variable Unit Value  Variable Unit Value 

q  
V 
VC  
ρ 
ρC  
Cp  
Cpc 

A  
k  
k10  
k20  

E1/R 
E2/R  

m3min-1 

m3 

m3 

kg m-3 

kg m-3 

kJ kg-1 K-1 

kJ kg-1 K-1 

m2 

kJ m-2 min-1 K-1 

min-1 

min-1 

K 
K 

0.015  
0.23  
0.21 
1020  
998  
4.02 
4.182 
1.51 
42.8  
1.55.1011  
4.55.1025 

9850 
22019 

 

∆rH1  
∆rH2   

cAv 

cBv 

cCv  

Ts
v 

Ts
vc 

qs
c 

Ts 

Ts
c 

cs
A 

cs
B 

cs
C 

kJ kmol -1 

kJ kmol-1 

kmol m-3 

kmol m-3 

kmol m-3 

K 
K 
m3 min-1 

K 
K 
kmol m-3 

kmol m-3 

kmol m-3 

-8.6.104  

-1.82.104 

4.22  
0  
0 
328  
298 
0.004 
363.61 
350.15  
0.4915  
2.0042  
1.7243  
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The reactions in the described reactor are exothermic ones and the heat generated by the 

chemical reactions is removed by the coolant in the jacket of the tank. The control objective is 

to keep the temperature of the reacting mixture close to a desired value.  

 

Results and discussion  

Neural Network Model Predictive Control of the CSTR 

The designed controller uses a neural network model to predict future CSTR responses to 

potential control signals. An optimization algorithm then computes the control signals that 

optimize future plant performance. The neural network plant model was trained using the 

Levenberg-Marquardt algorithm. The training data were obtained from the nonlinear model of 

the CSTR (6)-(10). The used model predictive control method was based on the receding 

horizon technique. The neural network model predicted the plant response over a specified 

time horizon. The predictions were used by a numerical optimization program to determine 

the control signal that minimizes performance criterion (1) over the specified horizon. The 

controller block was implemented in Simulink. Constraints and parameters values: 0 ≤ u ≤ 

0.02, 354 ≤ yp ≤ 365, N1 = 1, N2 = 7, Nu =3, λ= 0.5. 

 

Takagi-Sugeno controller for the CSTR 

Sugeno-type fuzzy inference system was generated using subtractive clustering in the form: if 

e is Ai  and de is Bi    then u = pi e + qi de + ri , i=1, ... 3     (14) 

where e is the control error, de is the derivation of the control error, u is the calculated control 

input qc(t) and pi, qi, ri are consequent parameters. The symmetric Gaussian function (gaussmf 

in MATLAB) was chosen as the membership function and it depends on two parameters σ 

and c as it is seen in (14) 

 ( )
( )

2

2

2σ

cx

e=cσ,x;f

−−
       (15) 

The parameters σ and c for gaussmf are listed in the Table 2. For obtaining of these 

parameters, it was necessary to have the data sets of e, de and u at first. These data were 

obtained by simulation of PID control of the CSTR. The consequent parameters in the control 
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input rule (14) are listed in Table 3 and the resulting plot of the output surface of a described 

fuzzy inference system is presented in Figure 5. 

 

Table 2: Parameters of the Gaussian curve membership functions 

e de 

σi ci σi ci 

0.348 
0.348 
0.348 
0.348 

0.088 
-0.072 
-0.048 
0.281 

0.348 
0.348 
0.348 
0.348 

-0.025 
0.004 
0.003 
-0.055 

 
Table 3:  Consequent parameters  

pi qi r i 

-0.030 
0.057 
0.124 
-0.002 

-0.127 
0.013 
-0.073  
0.0 

 -0.042 
-0.848 
 -0.780 
0.012 

 

Fig. 5.  Takagi-Sugeno controller - control signal u as function of control error e and its 
derivation de. 
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PID control 

For feedback controller tuning, the approximate model of a system with complex dynamics 

can have the form of a first-order-plus-time-delay transfer function (16). The process is 

characterised by a steady-state gain K, an effective time constant T and an effective time delay 

D.  

 ( ) Ds
P e

+Ts

K
=sG −

1         (16) 

  The transfer function describing the controlled chemical reactor was identified 

from step response data in the form (16) with parameters: K = -1257, T = 14 min, D = 2 min. 

These parameters were used for feedback controller tuning. The feedback PID controllers 

were tuned by various methods, see e.g. Ogunnaike and Ray (1994). The best simulation 

results were obtained with PID controller (17) tuned using Chien-Hrones-Reswick method.  

The controller parameters are KC  = -0.003, TI  = 16.8, TD  = 1.41. The transfer function of the 

used PID controller is following 

  
( ) 








sT+

sT
+K=sG D

I
CC

1
1

       (17) 

 Figure 6 presents the simulation results of the predictive control of the CSTR. These 

results are compared with those obtained by fuzzy control and PID control of the CSTR 

 

Fig. 6. Comparison of the reacting mixture temperature control: predictive control (...... ), 
fuzzy control (- - - ), PID control (- . - . -), reference trajectory ( __ ) 
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The step changes of the reference yr were generated and the MBP, fuzzy and PID controllers 

were compared using iae and ise criteria described as follows: 

 
∫=
T

dteiae
0          (18) 

 
∫=
T

dteise
0

2

          (19) 

The iae and ise values are given in Table 4. 

Table 4: Comparison of the simulation results by integrated absolute error iae and integrated 
square error ise 

control method iae ise 

predictive control 168 728 

fuzzy control 211 724 

PID control 220 771 

 

Figure 7 presents the simulation results of the predictive control, fuzzy control and 

PID control of the CSTR in the case when disturbances affect the controlled process. 

Disturbances were represented by coolant temperature changes from 298 K to 327 K at t=100 

min, from 327 K to 291 K at t=300 min and from 291 K to 310 K at t=500 min. The iae and 

ise values are given in Table 5. 

 

Fig. 7.  Comparison of the reacting mixture temperature control in case when disturbances 
affect the controlled process: predictive control (...... ), fuzzy control (- - - ), PID 
control (-.-.-), reference trajectory ( __ ) 
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Table 5: Comparison of the simulation results by integrated absolute error and integrated 
square error in case when disturbances affect the controlled process. 

control method iae ise 

predictive control 161 421 

fuzzy control 322 712 

PID control 405 772 

 

Used fuzzy controller is simple, and it offers lesser value ise than the predictive 

controller in the case when the reactor is not affected by disturbances.  The disadvantage of 

the fuzzy controller is, that using the controller leads to nonzero steady-state errors. The 

steady-state errors vary from 0.05 K to 0.17 K, when the reactor without disturbances is 

controlled. In the case of the reactor control in the presence of disturbances, the steady-state 

errors vary from 0.17 K to 1.24 K. The advantage of the fuzzy control is that the control 

responses do not show any overshoots and undershoots. The worst simulation results were 

obtained using the PID controller. The control responses are most oscillating, and the PID 

controller used in a simple feedback control loop is not able to attenuate disturbances. The 

best simulation results were obtained using the neural network predictive controller. Although 

the control responses are oscillating, the maximum overshoot is smaller than the one with the 

fuzzy controller. Simultaneously, the steady state errors are very small, the maximum steady 

state error is 0.38 K in the presence of disturbances. The followed integral criteria also 

confirm that the best of three controllers in the neural network predictive controller.  

Conclusions 

In this paper, an application of a neural network based predictive control strategy to a CSTR 

is presented. The simulation results confirm that the neural network based predictive control 

is one of the possibilities for successful control of CSTRs. The advantage of this approach is 

that it is not linear-model-based strategy and the control input constraints are directly included 

to the synthesis. Comparison of the MBPC simulation results with fuzzy control and classical 

PID control demonstrates the effectiveness and superiority of the proposed approach. These 

properties are apparent, especially in the case, when the controlled process is affected by 

disturbances.  
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