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Abstract

Model Predictive Control (MPC) refers to a classaltforithms that compute a sequence of
manipulated variable adjustments in order to oérthe future behaviour of a plant. MPC
technology can now be found in a wide variety oplejation areas. The neural network
predictive controller that is discussed in thisgrapses a neural network model of a nonlinear
plant to predict future plant performance. The ouifér calculates the control input that will
optimize plant performance over a specified futimee horizon. In the paper, simulation of
the neural network based predictive control ofdbmetinuous stirred tank reactor is presented.

The simulation results are compared with fuzzy @Hal control.

Keywords: model predictive control, fuzzy control, PID cortmeeural network, continuous

stirred tank reactor

Introduction

Conventional process control systems utilize lirdgaramic models. For highly
nonlinear systems, control techniques directly Basenonlinear models can be expected to
provide significantly improved performance. Modeé&ictive Control (MPC) concept has
been extensively studied and widely accepted instréhl applications. The main reasons for
such popularity of the predictive control strategaee the intuitiveness and the explicit
constraint handling. The predictive controllers ased in many areas, where high-quality
control is required, see e.g. Qin and Badgwell §9Qin and Badgwell (2000), Rawlings
(2000). Model-based predictive control refers tass of control algorithms, which are
based on a process model. MBPC can be appliecctosyistems, as e.g. multivariable, non-

minimum-phase, open-loop unstable, non-linearystesns with long time delays.
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Constrained model predictive control becomes taedzrd algorithm for advanced control in
process industries.Several versions of MPC teclesigue Model Algorithmic Control
(MAC), see e.g. Richalet et al. (1978), Dynamic i4aControl (DMC), see e.g. Cutler et al.
(1980), and Internal Model Control (IMC), see é&gucia et al. (1982). Although the above
techniques differ from each other in some detthksy are fundamentally the same, because
all of them are based on linear process modellfrtge nonlinear model is available, the
computational requirements are very high, see@agcia et al. (1989), especially for
nonlinear MIMO processes. It is estimated thag tgpical commissioning project, modelling
efforts can take up to 90% of the cost and timeniplementing a model predictive controller
by Morari and Lee (1999).

The Neural Network Model Predictive Control (NNMPi€)xanother typical and
straightforward application of neural networks tmlinear control. When a neural network is
combined with MPC approach, it is used as a forvpaodess model for the prediction of
process output, see e.g. Hunt et al. (1992), Ngdgzataal. (2000). Control of chemical
reactors is one of the most studied areas of psom&srol. In this paper, a neural network
based predictive control strategy is applied tortiauous-time stirred reactor with two
parallel first-order irreversible exothermic reaats. Simulation results show that the neural

network based predictive control gives promisirgutes.

Theoretical
M odel-based predictive control

MBPC is a name of several different control techew) All are associated with the same idea.
The prediction is based on the model of the proaesg is shown in Figure 1.
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Fig. 1. Classical model-based predictive contrbkesce
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The target of the model-based predictive contrdbigredict the future behaviour of
the process over a certain horizon using the dynanadel and obtaining the control actions

to minimize a certain criterion, generally

a(kalbl)= 3ol 1= )23l - @

Signalsym(k+j), yi(k+j), u(k+j) are thg-step ahead predictions of the process output,
the reference trajectory and the control inputpeetively. The valuedN; and N, are the
minimal and maximal prediction horizon of the caotlgd output, and\, is the prediction
horizon of the control input. The value bf should cover the important part of the step
response curve. The use of the control horikrreduces the computational load of the
method. The parametdrrepresents the weight of the control signal. Athesampling period
only the first control signal of the calculated sence is applied to the controlled process. At
the next sampling time the procedure is repeatdis & known as the receding horizon
concept.

The controller consists of the plant model anddpgmization block. Eq. (1) is used

in combination with the input and output constrsint

2
ymin < y < ymax ()

Aymin < Ay < Aymax
The ability to handle constraints is one of the kegperties of MBPC and also causes its
spread, use, and popularity in industry. MBPC atbors are reported to be very versatile and

robust in process control applications.

Neural network predictive control

Neural networks have been applied very successfallthe identification and control of
dynamic systems. The universal approximation cdipabiof the multilayer perceptron make
it a popular choice for modelling of nonlinear gss and for implementing of nonlinear
controllers. The use of a neural network for precesdelling is shown in Figure 2. The
unknown function may correspond to a controlledteays and the neural network is the
identified plant model. Two-layer networks, withlgsioid transfer functions in the hidden

layer and linear transfer functions in the outpyek, are universal approximators.
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Fig. 2. Neural network as a function approximator

The prediction error between the plant output d&edrnteural network output is used as
the neural network training signal. The neural rekaplant model uses previous inputs and
previous plant outputs to predict future valueshef plant output. The structure of the neural
network plant model is given in the Figure 3, whefi is the system input(t) is the plant
output, y(t) is the neural network model plant output, the kéoabelled TDL are tapped
delay lines that store previous values of the irgighal,IW " is the weight matrix from the
input j to the layeii. LW " is the weight matrix from the laygrto the layei.
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Fig. 3. Structure of the neural network plant model

This network can be trained off-line in batch modsing data collected from the
operation of the plant. The procedure for selectivgnetwork parameters is called training
the network. The Levenberg-Marquardt (LM) algoritiswery efficient for training. The LM
algorithm is an iterative technique that locatestinimum of a function that is expressed as
the sum of squares of nonlinear functions. It hesolme a standard technique for nonlinear

least-squares problems and can be thought of asn@ication of steepest descent and the
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Gauss-Newton method, see e. g. Kelley (1999), Lleeen (1944), Madsen et al. (2004),
Marquardt (1963), Mittelmann (2004).

When the current solution is far from the correnkeothe algorithm behaves like a
steepest descent method: slow, but guaranteechteerge. When the current solution is close

to the correct solution, it becomes a Gauss-Newiethod.

Let f be an assumed functional relation which maps arpeter vecto p[(0R™ to an

estimated measurement vec X= f(p),f(D R" . An initial parameter estimatpy, and a

measured vectax are provided, and it is desired to find the vegtothat best satisfies the

functional relatiorf, i.e. minimizes the squared distaie"e with e= x - X. The basis of the
LM algorithm is a linear approximation foin the neighbourhood qf. For a smaIH(SpH, a

Taylor series expansion leads to the approxime f (p+9,)= f(p)+ 35, whereJ is the

of
Jacobi matri» p)

p Like all non-linear optimization methods, LM i®fative: initiated at

the starting poinpo, the method produces a series of vegre,, ..., thatconverge towards

a local minimizemp” for f. Hence, at each step, it is required to findd, ehat minimizes the

quantity”e—Jépu. The soughd, is thus the solution of a linear least-square igmb the
minimum is attained whe Jd, —€ is orthogonal to the column space bfThis leads to
J7 (Jép —e): 0,which yieldsd, as the solution of the normal equations:
J7¥,=J"e 3)

The matrixJ'J in the left hand side of Eq. (3) is the approxienatessian, i.e. an
approximation to the matrix of second order denx. The LM method actually solves a
slight variation of Eq. (3), known as the augmentedmal equation No, = J"e, where the
off-diagonal elements of N are identical to theresponding elements 38fJ and the diagonal
elements are given kN, = u+ [JTJJii for somey >0. The strategy of altering the diagonal
elements ofJ'J is damping andy is referred to the damping term. If the updatedhpeeter
vector P+ 9, with 6, computed from Eq. (3) leads to a reduction ofetvere, the update is

accepted and the process repeats with a decreasepind) term. Otherwise, the damping

term is increased, the augmented normal equatiasaved again and the process iterates

until a value oid, that decreases error is found.

Acta Chimica Slovaca, Vol.2, No.2, 2009, 21 - 36



A.Vasikanova, M.BakoSova, Neural Network Predictive Calraf a Chemical Reactor
26

In LM, the damping term is adjusted at each iterato assure a reduction in the ereoil he
LM algorithm terminates when at least one of tHe®fang conditions is met:
1. The magnitude of the gradient efe, i.e. J'e in the right hand side of Eq. (3),
drops below a threshold.
2. The relative change in the magnitude 9 , drops below a thresholg.
3. The errore’edrops below a threshold.

4. A maximum number of iteratiorig,axiS completed.
If a covariance matri Y. for the measured vector is available, the minimum is

found by solving a weighted least squares problefméd by the weighted normal equations

7Y 35,23 e (4)

Fuzzy Control

Classic control theory is usually based on matheaanodels which describe the behaviour
of the controlled process. The main aim of fuzzyitoa is to simulate a human expert
(operator), who is able to control the processragdlating the linguistic control rules into a
fuzzy set theory.

In 1965, Lotfi A. Zadeh introduced fuzzy sets, whea more flexible sense of
membership is possible. The past few years haveessed a rapid growth in the use of fuzzy
logic controllers for the control of processes ta complex and badly defined. Most fuzzy
controllers developed till now have been of theetibhsed type by Driankov et al. (1993),
where the rules in the controller attempt to mdbeloperator’s response to particular process
situations. An alternative approach uses fuzzyneelse fuzzy model in process control, see
e.g. Babuska et al. (1995), Jang (1995), becauseften much easier to obtain information
on how a process responds to particular inputs tbarecord how, and why, an operator
responds to particular situations.

A review of the work on fuzzy control has beensgrged by Lee (1990). Design of a
simple fuzzy controller can be based on a threp design procedure, that builds on PID
control: start with a PID controller; insert an a@lent, linear fuzzy controller; make the
controller gradually nonlinear. The fuzzy controléan include empirical rules. This property
is especially useful in operator controlled plantgt us consider e.g. a typical fuzzy

controller:
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if error is negative and change in error is negathen output is negative big,

if error is negative and change in error is zeenthutput is negative medium.

The collection of rules is called a rule base. Theputer is able to execute the rules and
compute a control signal depending on the measimmats error and change in error. The
inputs are most often hard or crisp measuremeoitls fome measuring equipment.

A dynamic controller would have additional inputs; example derivatives, integrals,
or previous values of measurements backwards ie. firhe block fuzzification converts each
piece of input data to degrees of membership bgokup in one or several membership
functions. The rules may use several variables) bothe condition and the conclusion of the
rules. Basically, a linguistic controller containdes in the if-then format, but they can be
presented in different formats. The resulting fugey must be converted to a number that can
be sent to the process as a control signal. Thesatipn is called defuzzification. There are
several defuzzification methods. Output scalingls® relevant. In case the output is defined
on a standard universe this must be scaled to eegng units.

Fuzzy controller
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Fig. 4. Fuzzy controller

Takagi-Sugeno type controller

The output sets can often be linear combinatidriseoinputs, or even a function of
the inputs. The developed Fuzzy Logic Toolbox Far $oftware package Matlab implements
one of the hybrid schemes known as the Adaptivevbidt based Fuzzy Inference System

(Anfis). Anfis represents a Sugeno-type fuzzy gysie the special five-layer feed forward
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network architecture and uses a hybrid learningrélgn to identify the membership function
parameters of single-output, Sugeno type fuzzyémee systems. Suppose the rule base of a
Sugeno - Takagi fuzzy system is as follows, seeNagcket al (1977), Takagi et al. (1985),
Kvasnica et al. (2009):

if X,is Ay andx; is Bitheny = p X +q; X +rj, i=1,..N (5)

The if-parts (antecedents) of the rules descriaeyfuegions in the space of input variables
errore, its derivativede. The then-parts (consequents) are functions of ghetsn usually
linear with consequent parametersq;, ri. Furthery is an output variablel;, B; are fuzzy

sets characterized by three linguistic variablesa{s middle, large).

Experimental

Consider a continuous stirred tank reactor (CSTRYdsickaninova et al. (2005),

Vasitkaninova et al. (2006) with two parallel first-ordereversible reactions according to the

schem ,ADjﬂ ~BAI%-C , Where B is the main product and C is the sidelpch The
measured and controlled output is the temperatuiteeaeaction mixture. The control input is
the volumetric flow rate of the cooling medium. Bibse disturbances include changes in the
feed temperature and the coolant temperature. filyenmanipulated variable is the coolant
flow rate.

The simplified non-linear dynamic mathematical mloaf the chemical reactor

consists of five differential equations:

at VCAV_VCA —k,Cp —K,Cy (6)
de; _ 9q g
dt VCBV_VCB+ K,Cx (7)
dec _ q g
dt VCCV_VCC"' K,Ca (8)
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dT Ak Q,
==d7,-dr- [T-T]+ = (9)
dt V' V.  VeC, VeC,
dT. g q Ak
e e _HeT 4 T-T
dt VC Ve VC c VC,DCCpC [ c] (10)

The reaction rate coefficients are non-linear fioms of the reaction temperature being

defined by the Arrhenius relations

B =
k= kpe RT Kk, = kye (1)
The heat generated by chemical reactions is exguiess
Qr = ke V(=4.H, )+ k,cV(-4.H,) 12)

Here,c are concentrationg, are temperature¥,are volumesp are densitieCp are
specific heat capacitieg,are volumetric flow rateg\,H are reaction enthalpie,is the heat
transfer ared is the heat transfer coefficient. The subsarigenotes the coolantthe
reacting mixture and the superscienotes the steady-state values in the main opgrati

point. Parameters and inputs of the reactor arenerated in Table 1.

Table 1: Reactor parameters and inputs

Variable Unit Value
q m°min* 0.015
V m° 0.23
Ve m° 0.21
p kg m* 1020
pC kg m® 998
Co kJ kg' K™* 4.02
Coc kd kg' K* 4.182
A m? 1.51
k kIm?mintK? 428
K1o min’t 1.55.16%
Ko mint 4.55.16°
E.J/R K 9850
E,J/R K 22019

Variable Unit Value
AH1 kJ kmol ™t -8.6.1d
AH> kJ kmol* -1.82.1¢
Cav kmol m? 4.22
Cav kmol m® 0
Cov kmol m?® 0
Ty K 328

ve Ko 208
g m°> min’ 0.004
I K 363.61

K Ko 350.15
Ca kmol m 0.4915
Cs kmol m® 2.0042
S kmol m® 1.7243

Acta Chimica Slovaca, Vol.2, No.2, 2009, 21 - 36
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The reactions in the described reactor are exoibeomes and the heat generated by the
chemical reactions is removed by the coolant indbket of the tank. The control objective is

to keep the temperature of the reacting mixtursecto a desired value.

Results and discussion
Neural Network Model Predictive Control of the CSTR

The designed controller uses a neural network midaledict future CSTR responses to
potential control signals. An optimization algornitthen computes the control signals that
optimize future plant performance. The neural nekwiant model was trained using the
Levenberg-Marquardt algorithm. The training dataen@btained from the nonlinear model of
the CSTR (6)-(10). The used model predictive cdmrethod was based on the receding
horizon technique. The neural network model predi¢he plant response over a specified
time horizon. The predictions were used by a nuraéadptimization program to determine
the control signal that minimizes performance cioie (1) over the specified horizon. The
controller block was implemented in Simulink. Caasits and parameters valuéss u <

0.02, 354<y,<365, N=1,N, =7, N, =3, 1= 0.5.

Takagi-Sugeno controller for the CSTR

Sugeno-type fuzzy inference system was generatad sgbtractive clustering in the form: if
eisA anddeisB; thenu=pe+qde+r,i=1,..3 (14)

wheree is the control errodeis the derivation of the control errarjs the calculated control
inputgc(t) andp;, g, ri are consequent parameters. The symmetric Gaussiatidn gaussmf
in MATLAB) was chosen as the membership functiod armepends on two parameters
andc as it is seen in (14)

- (x-¢)

f(x;oc)=e 20° (15)

The parameters andc for gaussmére listed in the Table 2. For obtaining of these
parameters, it was necessary to have the datafsgtde andu at first. These data were

obtained by simulation of PID control of the CSTIRe consequent parameters in the control
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input rule (14) are listed in Table 3 and the riasglplot of the output surface of a described

fuzzy inference system is presented in Figure 5.

Table 2: Parameters of the Gaussian curve membpdisigtions

e de
% Ci g Ci
0.348 0.088 0.348 -0.025
0.348 -0.072 0.348 0.004
0.348 -0.048 0.348 0.003
0.348 0.281 0.348 -0.055

Table 3: Consequent parameters

Pi 0] r
-0.030 -0.127 -0.042
0.057 0.013 -0.848
0.124 -0.073 -0.780
-0.002 0.0 0.012

Fig. 5. Takagi-Sugeno controller - control signas function of control errarand its
derivationde
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PID control
For feedback controller tuning, the approximate ed@d a system with complex dynamics
can have the form of a first-order-plus-time-deiansfer functior(16). The process is
characterised by a steady-state dgaian effective time constaftand an effective time delay
D.

Gp(s)= TEK+ € (16)

The transfer function describing the controlle@rmical reactor was identified

from step response data in the form (16) with patens:K = -1257,T = 14 min,D = 2 min.
These parameters were used for feedback conttaliérg. The feedback PID controllers
were tuned by various methods, see e.g. Ogunnatk&ay (1994). The best simulation
results were obtained with PID controller (17) tdnssing Chien-Hrones-Reswick method.
The controller parameters dfe =-0.003 T; = 16.8 Tp = 1.41. The transfer function of the
used PID controller is following

1
G.(s)= KC(1+ —+ TDsj

(17)
Figure 6 presents the simulation results of tleglgtive control of the CSTR. These
results are compared with those obtained by fupryrol and PID control of the CSTR
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Fig. 6. Comparison of the reacting mixture tempe®atontrol: predictive control (...... ),
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The step changes of the referegceere generated and the MBP, fuzzy and PID contslle
were compared usirige andise criteria described as follows:

;

iae = J' edt
0 (18)
.

ise= J' e? dt
0

(19)
Theiae andisevalues are given in Table 4.

Table 4:Comparison of the simulation results by integratbdolute errolae and integrated
square erroise

control method iae ise
predictive control 168 728
fuzzy control 211 724
PID control 220 771

Figure 7 presents the simulation results of thaliptige control, fuzzy control and
PID control of the CSTR in the case when disturkanaffect the controlled process.
Disturbances were represented by coolant temperahanges from 298 K to 327 K at t=100
min, from 327 K to 291 K at t=300 min and from 2Q10 310 K at t=500 min. Thi&ae and

isevalues are given in Table 5.
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Fig. 7. Comparison of the reacting mixture tempgeacontrol in case when disturbances

affect the controlled process: predictive control.( ), fuzzy control (- - - ), PID
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Table 5: Comparison of the simulation results bhggnated absolute error and integrated
square error in case when disturbances affectdhealled process.

control method iae ise
predictive control 161 421
fuzzy control 322 712
PID control 405 772

Used fuzzy controller is simple, and it offers kersgalue ise than the predictive
controller in the case when the reactor is notcadieg by disturbances. The disadvantage of
the fuzzy controller is, that using the controllsds to nonzero steady-state errors. The
steady-state errors vary from 0.05 K to 0.17 K, witlee reactor without disturbances is
controlled. In the case of the reactor controhi@ presence of disturbances, the steady-state
errors vary from 0.17 K to 1.24 K. The advantagéheffuzzy control is that the control
responses do not show any overshoots and undessfd worst simulation results were
obtained using the PID controller. The control mses are most oscillating, and the PID
controller used in a simple feedback control lbpat able to attenuate disturbances. The
best simulation results were obtained using thealewetwork predictive controller. Although
the control responses are oscillating, the maximuarshoot is smaller than the one with the
fuzzy controller. Simultaneously, the steady staters are very small, the maximum steady
state error is 0.38 K in the presence of disturbanthe followed integral criteria also
confirm that the best of three controllers in tleeiral network predictive controller.

Conclusions

In this paper, an application of a neural netwaxkdd predictive control strategy to a CSTR
is presented. The simulation results confirm thatrieural network based predictive control
is one of the possibilities for successful contCSTRs. The advantage of this approach is
that it is not linear-model-based strategy andctirgrol input constraints are directly included
to the synthesis. Comparison of the MBPC simulatesults with fuzzy control and classical
PID control demonstrates the effectiveness andrgurfig of the proposed approach. These
properties are apparent, especially in the casenwline controlled process is affected by

disturbances.
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